
185

 14 Higher-Order Functions and Flexible
Search

Chapter

Objectives
Lisp higher-order functions
Lisp functions
 map
 filter
Lisp functions as arguments of functions
 funcall
 apply
Designing search algorithms in Lisp
 General production system framework
 Use of open and closed lists
Algorithms designed in Lisp
 Depth-first search
 Breadth-first search
 Best first search
 Programmer implements typing as needed

Chapter
Contents

14.1 Higher-Order Functions and Abstraction
14.2 Search Strategies in Lisp

 14.1 Higher-Order Functions and Abstraction

 One of the most powerful techniques that Lisp and other functional
programming languages provide is the ability to define functions that take
other functions as parameters or return them as results. These functions
are called higher-order functions and are an important tool for procedural
abstraction.

Maps and
Filters

A filter is a function that applies a test to the elements of a list, eliminating
those that fail the test. filter-negatives, presented in Section 12.2,
was an example of a filter. Maps takes a list of data objects and applies a
function to each one, returning a list of the results. This idea may be
further generalized through the development of general maps and filters
that take as arguments both lists and the functions or tests that are to be
applied to their elements.

To begin with an example, recall the function filter-negatives
from Section 12.2. This function took as its argument a list of numbers and
returned that list with all negative values deleted. Similarly, we can define a
function to filter out all the even numbers in a list. Because these two
functions differ only in the name of the predicate used to filter elements
from the list, it is natural to think of generalizing them into a single
function that takes the filtering predicate as a second parameter:

186 Part II: Programming in Lisp

(defun filter-evens (number-list)
 (cond ((null number-list) nil)

 ((oddp (car number-list))

 (cons (car number-list)

 (filter-evens

 (cdr number-list))))

 (t (filter-evens (cdr number-list)))))

This combination of function applications may be defined using a Lisp
form called funcall, which takes as arguments a function and a series of
arguments and applies that function to those arguments:

(defun filter (list-of-elements test)

 (cond ((null list-of-elements) nil)

 ((funcall test (car list-of-elements))

 (cons (car list-of-elements)

 (filter (cdr list-of-elements)

 test)))

 (t (filter (cdr list-of-elements)

 test))))

The function, filter, applies the test to the first element of the list. If
the test returns non-nil, it conses the element onto the result of
filter applied to the cdr of the list; otherwise, it just returns the
filtered cdr. This function may be used with different predicates passed in
as parameters to perform a variety of filtering tasks:

> (filter ‘(1 3 –9 5 –2 –7 6) #’plusp)

 ;Filter out all negative numbers.

(1 3 5 6)

> (filter ‘(1 2 3 4 5 6 7 8 9) #’evenp)

 ;Filter out all odd numbers.

(2 4 6 8)

> (filter ‘(1 a b 3 c 4 7 d) #’numberp)

 ;Filter out all non-numbers.

(1 3 4 7)

When a function is passed as a parameter, as in the above examples, it
should be preceded by a #’ instead of just ‘. The purpose of this
convention is to flag arguments that are functions so that they may be
given appropriate treatment by the Lisp interpreter. In particular, when a
function is passed as an argument in Common Lisp, the bindings of its free
variables (if any) must be retained. This combination of function definition
and bindings of free variables is called a lexical closure; the #’ informs Lisp
that the lexical closure must be constructed and passed with the function.
More formally, funcall is defined:

(funcall <function> <arg1> <arg2> … <argn>)

In this definition, <function> is a Lisp function and <arg1> …
<argn> are zero or more arguments to the function. The result of

 Chapter 14 Higher-Order Functions and Flexible Search 187

evaluating a funcall is the same as the result of evaluating
<function> with the specified arguments as actual parameters.

apply is a similar function that performs the same task as funcall but
requires that its arguments be in a list. Except for this syntactic difference,
apply and funcall behave the same; the programmer can choose the
function that seems more convenient for a given application. These two
functions are similar to eval in that all three of them allow the user to
specify that the function evaluation should take place. The difference is
that eval requires its argument to be an s-expression that is evaluated;
funcall and apply take a function and its arguments as separate
parameters. Examples of the behavior of these functions include:

> (funcall #’plus 2 3)

5

> (apply #’plus ‘(2 3))

5

> (eval ‘(plus 2 3))

5

> (funcall #’car ‘(a b c))

a

> (apply #’car ‘((a b c)))

a

Another important class of higher-order functions consists of mapping
functions, functions that will apply a given function to all the elements of a
list. Using funcall, we define the simple mapping function map-
simple, which returns a list of the results of applying a functional to all
the elements of a list. It has the behavior:

(defun map-simple (func list)

 (cond ((null list) nil)

 (t (cons (funcall func (car list))

 (map-simple func (cdr list))))))

> (map-simple #’1+ ‘(1 2 3 4 5 6))

(2 3 4 5 6 7)

> (map-simple #’listp ‘(1 2 (3 4) 5 (6 7 8)))

(nil nil t nil t)

map-simple is a simplified version of a Lisp built-in function mapcar,
that allows more than one argument list, so that functions of more than
one argument can be applied to corresponding elements of several lists:

> (mapcar #’1+ ‘(1 2 3 4 5 6)) ;Same as map-simple.

(2 3 4 5 6 7)

> (mapcar #’+ ‘(1 2 3 4) ‘(5 6 7 8))

(6 8 10 12)

> (mapcar #’max ‘(3 9 1 7) ‘(2 5 6 8))

(3 9 6 8)

188 Part II: Programming in Lisp

mapcar is only one of many mapping functions provided by Lisp, as well
as only one of many higher-order functions built into the language.

Functional
Arguments and

Lambda
Expressions

In the preceding examples, function arguments were passed by their name
and applied to a series of arguments. This requires that the functions be
previously defined in the global environment. Frequently, however, it is
desirable to pass a function definition directly, without first defining the
function globally. This is made possible through the lambda expression.
Essentially, the lambda expression allows us to separate a function definition
from the function name. The origin of lambda expressions is in the lambda
calculus, a mathematical model of computation that provides (among other
things) a particularly thoughtful treatment of this distinction between an object
and its name. The syntax of a lambda expression is similar to the function
definition in a defun, except that the function name is replaced by the term
lambda. That is:

(lambda (<formal-parameters>) <body>)

Lambda expressions may be used in place of a function name in a funcall
or apply. The funcall will execute the body of the lambda expression
with the arguments bound to the parameters of the funcall. As with
named functions, the number of formal parameters and the number of actual
parameters must be the same. For example:

> (funcall #’(lambda (x) (* x x)) 4)

16

Here, x is bound to 4 and the body of the lambda expression is then
evaluated. The result, the square of 4, is returned by funcall. Other
examples of the use of lambda expressions with funcall and apply
include:

> (apply #’(lambda (x y) (+ (* x x) y)) ‘(2 3))

7

> (funcall #’(lambda (x) (append x x)) ‘(a b c))

(a b c a b c)

> (funcall #’(lambda (x1 x2)

 (append (reverse x1) x2)) ‘(a b c) ‘(d e f))

(c b a d e f)

Lambda expressions may be used in a higher-order function such as
mapcar in place of the names of globally defined functions. For example:

> (mapcar #’(lambda (x) (* x x)) ‘(1 2 3 4 5))

(1 4 9 16 25)

> (mapcar #’(lambda (x) (* x 2)) ‘(1 2 3 4 5))

(2 4 6 8 10)

> (mapcar #’(lambda (x) (and (> x 0) (< x 10)))

 ‘(1 24 5 –9 8 23))

(t nil t nil t nil)

Without lambda expressions the programmer must define every function in
the global environment using a defun, even though that function may be
used only once. Lambda expressions free the programmer from this

 Chapter 14 Higher-Order Functions and Flexible Search 189

necessity: for example, if it is desired to square each element in a list, the
lambda form is passed to mapcar as the first of the above examples
illustrates. It is not necessary to define a squaring function first.

 14.2 Search Strategies in Lisp

 The use of higher-order functions provides Lisp with a powerful tool for
procedural abstraction. In this section, we use this abstraction technique to
implement general algorithms for breadth-first, depth-first, and best-first
search. These algorithms implement the search algorithms using the open
list – the current state list – and the closed list – the already visited states –
to manage search through the state space, see Luger (2009, Chapters 3 and
4) and Chapter 4 of this book for similar search algorithms in Prolog.

Breadth-First
and Depth-First

Search

The Lisp implementation of breadth-first search maintains the open list as
a first-in-first-out (FIFO) structure. We will define open and closed as
global variables. This is done for several reasons: first to demonstrate the
use of global structures in Lisp; second, to contrast the Lisp solution with
that in Prolog; and third, it can be argued that since the primary task of this
program is to solve a search problem, the state of the search may be
represented globally. Finally, since open and closed may be large, their use
as global variables seems justified. General arguments of efficiency for the
local versus the global approach often depend on the implementation
details of a particular language. Global variables in Common Lisp are
written to begin and end with *. Breadth-first search may be defined:

(defun breadth-first ()

 (cond ((null *open*) nil)

 (t (let ((state (car *open*)))

 (cond ((equal state *goal*) ‘success)

 (t (setq *closed* (cons state
 closed))

 (setq *open* (append

 (cdr *open*)

 generate-descendants
 state *moves*)))

 (breadth-first)))))))

(defun run-breadth (start goal)

 (setq *open* (list start))

 (setq *closed* nil)

 (setq *goal* goal)

 (breadth-first))

In our implementation, the *open* list is tested: if it is nil, the algorithm
returns nil, indicating failure as there are no more states to evaluste; If
open is not nil, it examines the first element of *open*. If this is
equal to the goal, the algorithm halts and returns success; otherwise, it
calls generate-descendants to produce the children of the current
state, adds them to the *open* list, and recurs. run-breadth is an
initialization function that sets the initial values of *open*, *closed*, and
goal. generate-descendants is passed both the state

190 Part II: Programming in Lisp

and *moves* as parameters. *moves* is a list of the functions that
generate moves. In the farmer, wolf, goat, and cabbage problem, assuming the
move definitions of Section 13.2, *moves* would be:

(setq *moves*

 ‘(farmer-takes-self farmer-takes-wolf

 farmer-takes-goat farmer-takes-cabbage))

generate-descendants takes a state and returns a list of its
children. In addition to generating child states, it disallows duplicates in the
list of children and eliminates any children that are already in the *open* or
closed list. In addition to the state, generate-descendants is
given a list of moves; these may be the names of defined functions, or they
may be lambda definitions. generate-descendants uses a let block
to save the result of a move in the local variable child. We define
generate-descendants:

(defun generate-descendants (state moves)

 (cond ((null moves) nil)

 (t (let ((child (funcall (car moves)

 state))

 (rest (generate-descendants state
 (cdr moves))))

 (cond ((null child) rest)

 ((member child rest :test
 #’equal) rest)

 ((member child *open* :test
 #’equal) rest)

 ((member child *closed* :test
 #’equal) rest)

 (t (cons child rest)))))))

As first noted in Section 13.2, the calls to the member function use an
additional parameter, :test #’equal. The member function allows the
user to specify any test for membership. This allows us to use predicates of
arbitrary complexity and semantics to test membership. Though Lisp does not
require that we specify the test, the default comparison is the predicate eq. eq
requires that two objects be identical, which means they have the same
location in memory; we are using a weaker comparison, equal, that only
requires that the objects have the same value. By binding the global variable
moves to an appropriate set of move functions, the search algorithm just
presented may be used to search any state space graph in a breadth-
first fashion.
One difficulty that remains with this implementation is its inability to print
the list of states along the path from a start to a goal. Although all the
states that lead to the goal are present in the closed list when the algorithm
halts, these are mixed with all other states from earlier levels of the search
space. We can solve this problem by recording both the state and its
parent, and reconstructing the solution path from this information. For
example, if the state (e e e e) generates the state (w e w e), a
record of both states, ((w e w e) (e e e e)), is placed on

 Chapter 14 Higher-Order Functions and Flexible Search 191

open. Later, after the children of the state have been generated, the
same (<state> <parent>) pair is placed on *closed*.

When the current state equals the goal, the ancestor information is used to
build the path from the goal to the start state by going back to successive
parents. This augmented version of breadth-first search begins by
defining state records as an abstract data type:

(defun build-record (state parent)

 (list state parent))

(defun get-state (state-tuple) (nth 0 state-tuple))

(defun get-parent (state-tuple) (nth 1 state-tuple))

(defun retrieve-by-state (state list)

 (cond ((null list) nil)

 ((equal state (get-state (car list)))
 (car list))

 (t (retrieve-by-state state

 (cdr list)))))

build-record constructs a (<state> <parent>) pair. get-
state and get-parent access the appropriate fields of a record.
retrieve-by-state takes a state and a list of state records and
returns the record whose state field matches that state.
build-solution uses retrieve-by-state to chain back from state
to parent, constructing a list of successive states that led to a goal. When
initializing *open*, we will give the starting state a parent of nil; build-
solution stops when passed a null state.

(defun build-solution (state)

 (cond ((null state) nil)

 (t (cons state (build-solution (get-parent

 (retrieve-by-state state *closed*)))))))

The remainder of the algorithm is similar to the breadth-first search of
Section 3.2:

(defun run-breadth (start goal)

 (setq *open* (list (build-record start nil)))

 (setq *closed* nil)

 (setq *goal* goal)

 (breadth-first))

(defun breadth-first ()

 (cond ((null *open*) nil)

 (t (let ((state (car *open*)))

 (setq *closed* (cons state *closed*))

 (cond ((equal (get-state state)
 goal)

 (build-solution *goal*))

 (t (setq *open* (append (cdr
 open)

 (generate-descendants

192 Part II: Programming in Lisp

 (get-state state)

 moves)))

 (breadth-first)))))))

(defun generate-descendants (state moves)

 (cond ((null moves) nil)

 (t (let ((child (funcall

 (car moves) state))

 (rest (generate-descendants
 state (cdr moves))))

 (cond ((null child) rest)

 ((retrieve-by-state child rest)
 rest)

 ((retrieve-by-state child *open*)
 rest)

 ((retrieve-by-state child
 closed) rest)

 (t (cons (build-record child
 state)

 rest)))))))

Depth-first search is implemented by modifying breadth-first search to
maintain *open* as a stack. This simply involves reversing the order of
the arguments to append.

Best-First
Search

Best-first search may be implemented through straightforward
modifications to the breadth-first search algorithm. Specifically, the
heuristic evaluation is saved along with each state. The tuples on *open*
are then sorted according to this evaluation. The data type definitions for
state records are an extension of those used in breadth-first search:

(defun build-record (state parent depth weight)

 (list state parent depth weight))

(defun get-state (state-tuple) (nth 0 state-tuple))

(defun get-parent (state-tuple) (nth 1 state-tuple))

(defun get-depth (state-tuple) (nth 2 state-tuple))

(defun get-weight (state-tuple) (nth 3 state-tuple))

(defun retrieve-by-state (state list)

 (cond ((null list) nil)

 ((equal state (get-state (car list)))
 (car list))

 (t (retrieve-by-state state

 (cdr list)))))

best-first and generate-descendants are defined:
(defun best-first ()

 (cond ((null *open*) nil)

 (t (let ((state (car *open*)))

 (setq *closed* (cons state *closed*))

 Chapter 14 Higher-Order Functions and Flexible Search 193

 (cond ((equal (get-state state)
 goal)

 (build-solution *goal*))

 (t (setq *open*

 (insert-by-weight

 (generate-descendants
 (get-state state)

 (+ 1 (get-depth
 state))

 moves)

 (cdr *open*)))

 (best-first)))))))

(defun generate-descendants (state depth moves)

 (cond ((null moves) nil)

 (t (let ((child (funcall (car moves) state))

 (rest (generate-descendants state
 depth (cdr moves))))
 (cond ((null child) rest)

 ((retrieve-by-state child rest)
 rest)

 ((retrieve-by-state child *open*)
 rest)

 ((retrieve-by-state child *closed*)
 rest)

 (t (cons (build-record child state
 depth (+ depth (heuristic
 child)))

 rest)))))))
The only differences between best-first and breadth-first
search are the use of insert-by-weight to sort the records on
open by their heuristic weights and the computation of search depth
and heuristic weights in generate-descendants.

Completion of best-first requires a definition of insert-by-
weight. This function takes an unsorted list of state records and inserts
them, one at a time, into their appropriate positions in *open*. It also
requires a problem-specific definition of a function heuristic. This
function takes a state and, using the global *goal*, computes a heuristic
weight for that state. We leave the creation of these functions as an
exercise for the reader.

 Exercises

 1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member(a, a). Will this “fix” address the append(nil,
6, 6) anomaly that is described in Chapter 10? Test it and determine
your success.

194 Part II: Programming in Lisp

2. Implement build-solution and eliminate-duplicates
for the breadth-first search algorithm of Section 14.2.

3. Create a depth-first, a breadth-first, and best first search for the Water
Jugs problem (Chapter 13, number 5). This will require you to create a
heuristic measure for the Water Jugs problem, as well as create an
insert-by-weight function for maintaining the priority queue.

4. Create a depth-first, a breadth-first, and best first search for the
Missionaries and Cannibals problem (Chapter 13, number 6). This will
require you to create a heuristic measure for the Missionaries and
Cannibals problem, as well as create an insert-by-weight function
for maintaining the priority queue.

5. Write a Lisp program to solve the 8-queens problem. (This problem is to
find a way to place eight queens on a chessboard so that no queen may
capture any other through a single move, i.e., no two queens are on the
same row, column, or diagonal.) Do depth-first, breadth-first, and best-first
solutions to this problem.
6. Write a Lisp program to solve the full 8 x 8 version of the Knight’s Tour
problem. This problem asks you to find a path from any square to any other
square on the chessboard, using only the knight. Do a depth-first, breadth-
first, and best-first solutions for this problem.

