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 14.1 Higher-Order Functions and Abstraction 

 One of the most powerful techniques that Lisp and other functional 
programming languages provide is the ability to define functions that take 
other functions as parameters or return them as results. These functions 
are called higher-order functions and are an important tool for procedural 
abstraction. 

Maps and 
Filters 

A filter is a function that applies a test to the elements of a list, eliminating 
those that fail the test. filter-negatives, presented in Section 12.2, 
was an example of a filter. Maps takes a list of data objects and applies a 
function to each one, returning a list of the results. This idea may be 
further generalized through the development of general maps and filters 
that take as arguments both lists and the functions or tests that are to be 
applied to their elements. 

To begin with an example, recall the function filter-negatives 
from Section 12.2. This function took as its argument a list of numbers and 
returned that list with all negative values deleted. Similarly, we can define a 
function to filter out all the even numbers in a list. Because these two 
functions differ only in the name of the predicate used to filter elements 
from the list, it is natural to think of generalizing them into a single 
function that takes the filtering predicate as a second parameter: 
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(defun filter-evens (number-list)       
  (cond ((null number-list) nil) 

        ((oddp (car number-list)) 

            (cons (car number-list)  

                      (filter-evens  

            (cdr number-list)))) 

        (t (filter-evens (cdr number-list))))) 

This combination of function applications may be defined using a Lisp 
form called funcall, which takes as arguments a function and a series of 
arguments and applies that function to those arguments: 

(defun filter (list-of-elements test) 

    (cond ((null list-of-elements) nil) 

        ((funcall test (car list-of-elements)) 

        (cons (car list-of-elements)  

                   (filter (cdr list-of-elements)  

        test))) 

        (t (filter (cdr list-of-elements)  

        test)))) 

The function, filter, applies the test to the first element of the list. If 
the test returns non-nil, it conses the element onto the result of 
filter applied to the cdr of the list; otherwise, it just returns the 
filtered cdr. This function may be used with different predicates passed in 
as parameters to perform a variety of filtering tasks: 

> (filter ‘(1 3 –9 5 –2 –7 6) #’plusp)  

                   ;Filter out all negative numbers. 

(1 3 5 6) 

> (filter ‘(1 2 3 4 5 6 7 8 9) #’evenp) 

                        ;Filter out all odd numbers. 

(2 4 6 8) 

> (filter ‘(1 a b 3 c 4 7 d) #’numberp) 

                        ;Filter out all non-numbers. 

(1 3 4 7) 

When a function is passed as a parameter, as in the above examples, it 
should be preceded by a #’ instead of just ‘. The purpose of this 
convention is to flag arguments that are functions so that they may be 
given appropriate treatment by the Lisp interpreter. In particular, when a 
function is passed as an argument in Common Lisp, the bindings of its free 
variables (if any) must be retained. This combination of function definition 
and bindings of free variables is called a lexical closure; the #’ informs Lisp 
that the lexical closure must be constructed and passed with the function. 
More formally, funcall is defined: 

(funcall <function> <arg1> <arg2> … <argn>) 

In this definition, <function> is a Lisp function and <arg1> … 
<argn> are zero or more arguments to the function. The result of 
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evaluating a funcall is the same as the result of evaluating 
<function> with the specified arguments as actual parameters. 

apply is a similar function that performs the same task as funcall but 
requires that its arguments be in a list. Except for this syntactic difference, 
apply and funcall behave the same; the programmer can choose the 
function that seems more convenient for a given application. These two 
functions are similar to eval in that all three of them allow the user to 
specify that the function evaluation should take place. The difference is 
that eval requires its argument to be an s-expression that is evaluated; 
funcall and apply take a function and its arguments as separate 
parameters. Examples of the behavior of these functions include: 

> (funcall #’plus 2 3) 

5 

> (apply #’plus ‘(2 3)) 

5 

> (eval ‘(plus 2 3)) 

5 

> (funcall #’car ‘(a b c)) 

a 

> (apply #’car ‘((a b c))) 

a 

Another important class of higher-order functions consists of mapping 
functions, functions that will apply a given function to all the elements of a 
list. Using funcall, we define the simple mapping function map-
simple, which returns a list of the results of applying a functional to all 
the elements of a list. It has the behavior: 

(defun map-simple (func list) 

    (cond ((null list) nil) 

        (t (cons (funcall func (car list)) 

          (map-simple func (cdr list)))))) 

> (map-simple #’1+ ‘(1 2 3 4 5 6)) 

(2 3 4 5 6 7) 

> (map-simple #’listp ‘(1 2 (3 4) 5 (6 7 8))) 

(nil nil t nil t) 

map-simple is a simplified version of a Lisp built-in function mapcar, 
that allows more than one argument list, so that functions of more than 
one argument can be applied to corresponding elements of several lists: 

> (mapcar #’1+ ‘(1 2 3 4 5 6))  ;Same as map-simple. 

(2 3 4 5 6 7) 

> (mapcar #’+ ‘(1 2 3 4) ‘(5 6 7 8)) 

(6 8 10 12) 

> (mapcar #’max ‘(3 9 1 7) ‘(2 5 6 8)) 

(3 9 6 8) 
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mapcar is only one of many mapping functions provided by Lisp, as well 
as only one of many higher-order functions built into the language. 

Functional 
Arguments and 

Lambda 
Expressions 

In the preceding examples, function arguments were passed by their name 
and applied to a series of arguments. This requires that the functions be 
previously defined in the global environment. Frequently, however, it is 
desirable to pass a function definition directly, without first defining the 
function globally. This is made possible through the lambda expression. 
Essentially, the lambda expression allows us to separate a function definition 
from the function name. The origin of lambda expressions is in the lambda 
calculus, a mathematical model of computation that provides (among other 
things) a particularly thoughtful treatment of this distinction between an object 
and its name. The syntax of a lambda expression is similar to the function 
definition in a defun, except that the function name is replaced by the term 
lambda. That is: 

(lambda (<formal-parameters>) <body>) 

Lambda expressions may be used in place of a function name in a funcall 
or apply. The funcall will execute the body of the lambda expression 
with the arguments bound to the parameters of the funcall. As with 
named functions, the number of formal parameters and the number of actual 
parameters must be the same. For example: 

> (funcall #’(lambda (x) (* x x)) 4) 

16 

Here, x is bound to 4 and the body of the lambda expression is then 
evaluated. The result, the square of 4, is returned by funcall. Other 
examples of the use of lambda expressions with funcall and apply 
include: 

> (apply #’(lambda (x y) (+ (* x x) y)) ‘(2 3)) 

7 

> (funcall #’(lambda (x) (append x x)) ‘(a b c)) 

(a b c a b c) 

> (funcall #’(lambda (x1 x2)  

      (append (reverse x1) x2)) ‘(a b c) ‘(d e f)) 

(c b a d e f) 

Lambda expressions may be used in a higher-order function such as 
mapcar in place of the names of globally defined functions. For example: 

> (mapcar #’(lambda (x) (* x x)) ‘(1 2 3 4 5)) 

(1 4 9 16 25) 

> (mapcar #’(lambda (x) (* x 2)) ‘(1 2 3 4 5)) 

(2 4 6 8 10) 

> (mapcar #’(lambda (x) (and (> x 0) (< x 10)))  

         ‘(1 24 5 –9 8 23)) 

(t nil t nil t nil) 

Without lambda expressions the programmer must define every function in 
the global environment using a defun, even though that function may be 
used only once. Lambda expressions free the programmer from this 
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necessity: for example, if it is desired to square each element in a list, the 
lambda form is passed to mapcar as the first of the above examples 
illustrates. It is not necessary to define a squaring function first. 

              14.2   Search Strategies in Lisp 

 The use of higher-order functions provides Lisp with a powerful tool for 
procedural abstraction. In this section, we use this abstraction technique to 
implement general algorithms for breadth-first, depth-first, and best-first 
search. These algorithms implement the search algorithms using the open 
list – the current state list – and the closed list – the already visited states – 
to manage search through the state space, see Luger (2009, Chapters 3 and 
4) and Chapter 4 of this book for similar search algorithms in Prolog. 

Breadth-First 
and Depth-First 

Search 

The Lisp implementation of breadth-first search maintains the open list as 
a first-in-first-out (FIFO) structure. We will define open and closed as 
global variables. This is done for several reasons: first to demonstrate the 
use of global structures in Lisp; second, to contrast the Lisp solution with 
that in Prolog; and third, it can be argued that since the primary task of this 
program is to solve a search problem, the state of the search may be 
represented globally. Finally, since open and closed may be large, their use 
as global variables seems justified. General arguments of efficiency for the 
local versus the global approach often depend on the implementation 
details of a particular language. Global variables in Common Lisp are 
written to begin and end with *. Breadth-first search may be defined: 

(defun breadth-first ( ) 

    (cond ((null *open*) nil) 

        (t (let ((state (car *open*))) 

           (cond ((equal state *goal*) ‘success) 

               (t (setq *closed* (cons state  
            *closed*)) 

                  (setq *open* (append  

                    (cdr *open*) 

          generate-descendants  
           state *moves*))) 

                (breadth-first))))))) 

(defun run-breadth (start goal) 

    (setq *open* (list start)) 

    (setq *closed* nil) 

    (setq *goal* goal) 

    (breadth-first)) 

In our implementation, the *open* list is tested: if it is nil, the algorithm 
returns nil, indicating failure as there are no more states to evaluste; If 
*open* is not nil, it examines the first element of *open*. If this is 
equal to the goal, the algorithm halts and returns success; otherwise, it 
calls generate-descendants to produce the children of the current 
state, adds them to the *open* list, and recurs. run-breadth is an 
initialization function that sets the initial values of *open*, *closed*, and 
*goal*. generate-descendants is passed both the state 
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and *moves* as parameters. *moves* is a list of the functions that 
generate moves. In the farmer, wolf, goat, and cabbage problem, assuming the 
move definitions of Section 13.2, *moves* would be: 

(setq *moves* 

    ‘(farmer-takes-self farmer-takes-wolf  

   farmer-takes-goat farmer-takes-cabbage)) 

generate-descendants takes a state and returns a list of its 
children. In addition to generating child states, it disallows duplicates in the 
list of children and eliminates any children that are already in the *open* or 
*closed* list. In addition to the state, generate-descendants is 
given a list of moves; these may be the names of defined functions, or they 
may be lambda definitions. generate-descendants uses a let block 
to save the result of a move in the local variable child. We define 
generate-descendants: 

(defun generate-descendants (state moves) 

    (cond ((null moves) nil) 

        (t (let ((child (funcall (car moves)  

            state)) 

            (rest (generate-descendants state 
                    (cdr moves)))) 

          (cond ((null child) rest) 

            ((member child rest :test  
           #’equal) rest) 

            ((member child *open* :test  
           #’equal) rest) 

            ((member child *closed* :test  
           #’equal) rest) 

            (t (cons child rest))))))) 

As first noted in Section 13.2, the calls to the member function use an 
additional parameter, :test #’equal. The member function allows the 
user to specify any test for membership. This allows us to use predicates of 
arbitrary complexity and semantics to test membership. Though Lisp does not 
require that we specify the test, the default comparison is the predicate eq. eq 
requires that two objects be identical, which means they have the same 
location in memory; we are using a weaker comparison, equal, that only 
requires that the objects have the same value. By binding the global variable 
*moves* to an appropriate set of move functions, the search algorithm just 
presented may be used to search any state space graph in a breadth-
first fashion. 
One difficulty that remains with this implementation is its inability to print 
the list of states along the path from a start to a goal. Although all the 
states that lead to the goal are present in the closed list when the algorithm 
halts, these are mixed with all other states from earlier levels of the search 
space. We can solve this problem by recording both the state and its 
parent, and reconstructing the solution path from this information. For 
example, if the state (e e e e) generates the state (w e w e), a 
record of both states, ((w e w e) (e e e e)), is placed on 
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*open*. Later, after the children of the state have been generated, the 
same (<state> <parent>) pair is placed on *closed*. 

When the current state equals the goal, the ancestor information is used to 
build the path from the goal to the start state by going back to successive 
parents. This augmented version of breadth-first search begins by 
defining state records as an abstract data type: 

(defun build-record (state parent)  

        (list state parent)) 

(defun get-state (state-tuple) (nth 0 state-tuple)) 

(defun get-parent (state-tuple) (nth 1 state-tuple)) 

(defun retrieve-by-state (state list) 

    (cond ((null list) nil) 

        ((equal state (get-state (car list)))   
              (car list)) 

        (t (retrieve-by-state state  

              (cdr list))))) 

build-record constructs a (<state> <parent>) pair. get-
state and get-parent access the appropriate fields of a record. 
retrieve-by-state takes a state and a list of state records and 
returns the record whose state field matches that state. 
build-solution uses retrieve-by-state to chain back from state 
to parent, constructing a list of successive states that led to a goal. When 
initializing *open*, we will give the starting state a parent of nil; build-
solution stops when passed a null state. 

(defun build-solution (state) 

    (cond ((null state) nil) 

      (t (cons state (build-solution (get-parent  

            (retrieve-by-state state *closed*))))))) 

The remainder of the algorithm is similar to the breadth-first search of 
Section 3.2: 

(defun run-breadth (start goal) 

    (setq *open* (list (build-record start nil))) 

    (setq *closed* nil) 

    (setq *goal* goal) 

    (breadth-first)) 

(defun breadth-first ( ) 

    (cond ((null *open*) nil) 

        (t (let ((state (car *open*))) 

         (setq *closed* (cons state *closed*)) 

         (cond ((equal (get-state state)  
           *goal*)  

                           (build-solution *goal*)) 

             (t (setq *open* (append (cdr 
           *open*) 

              (generate-descendants  
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                  (get-state state)  

                           *moves*))) 

        (breadth-first))))))) 

(defun generate-descendants (state moves) 

   (cond ((null moves) nil) 

     (t (let ((child (funcall  

                  (car moves) state)) 

           (rest (generate-descendants  
         state (cdr moves)))) 

          (cond ((null child) rest) 

            ((retrieve-by-state child rest)  
         rest) 

            ((retrieve-by-state child *open*) 
         rest) 

         ((retrieve-by-state child   
         *closed*) rest) 

        (t (cons (build-record child  
             state)  

                              rest))))))) 

Depth-first search is implemented by modifying breadth-first search to 
maintain *open* as a stack. This simply involves reversing the order of 
the arguments to append. 

Best-First 
Search 

Best-first search may be implemented through straightforward 
modifications to the breadth-first search algorithm. Specifically, the 
heuristic evaluation is saved along with each state. The tuples on *open* 
are then sorted according to this evaluation. The data type definitions for 
state records are an extension of those used in breadth-first search:  

(defun build-record (state parent depth weight) 

    (list state parent depth weight)) 

(defun get-state (state-tuple) (nth 0 state-tuple)) 

(defun get-parent (state-tuple) (nth 1 state-tuple)) 

(defun get-depth (state-tuple) (nth 2 state-tuple)) 

(defun get-weight (state-tuple) (nth 3 state-tuple)) 

(defun retrieve-by-state (state list) 

    (cond ((null list) nil) 

        ((equal state (get-state (car list)))   
            (car list)) 

        (t (retrieve-by-state state  

                (cdr list))))) 

best-first and generate-descendants are defined: 
(defun best-first ( ) 

      (cond ((null *open*) nil) 

        (t (let ((state (car *open*))) 

         (setq *closed* (cons state *closed*)) 
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         (cond ((equal (get-state state) 
             *goal*)  

                        (build-solution *goal*)) 

             (t (setq *open*  

                (insert-by-weight 

                  (generate-descendants   
                    (get-state state) 

                 (+ 1 (get-depth  
           state))  

           *moves*)  

                     (cdr *open*))) 

         (best-first))))))) 

 

(defun generate-descendants (state depth moves) 

  (cond ((null moves) nil) 

    (t (let ((child (funcall (car moves) state)) 

          (rest (generate-descendants state  
          depth (cdr moves)))) 
        (cond ((null child) rest) 

          ((retrieve-by-state child rest)  
       rest) 

          ((retrieve-by-state child *open*)  
       rest) 

          ((retrieve-by-state child *closed*) 
       rest) 

        (t (cons (build-record child state  
          depth (+ depth (heuristic 
            child)))  

           rest))))))) 
The only differences between best-first and breadth-first 
search are the use of insert-by-weight to sort the records on 
*open* by their heuristic weights and the computation of search depth 
and heuristic weights in generate-descendants. 

Completion of best-first requires a definition of insert-by-
weight. This function takes an unsorted list of state records and inserts 
them, one at a time, into their appropriate positions in *open*. It also 
requires a problem-specific definition of a function heuristic. This 
function takes a state and, using the global *goal*, computes a heuristic 
weight for that state. We leave the creation of these functions as an 
exercise for the reader. 

                         Exercises 

 1. Create a type check that prevents the member check predicate (that 
checks whether an item is a member of a list of items) from crashing when 
called on member(a, a). Will this “fix” address the append(nil, 
6, 6) anomaly that is described in Chapter 10? Test it and determine 
your success. 
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2. Implement build-solution and eliminate-duplicates 
for the breadth-first search algorithm of Section 14.2. 

3. Create a depth-first, a breadth-first, and best first search for the Water 
Jugs problem (Chapter 13, number 5). This will require you to create a 
heuristic measure for the Water Jugs  problem, as well as create an 
insert-by-weight function for maintaining the priority queue. 

4. Create a depth-first, a breadth-first, and best first search for the 
Missionaries and Cannibals problem (Chapter 13, number 6). This will 
require you to create a heuristic measure for the Missionaries and 
Cannibals problem, as well as create an insert-by-weight function 
for maintaining the priority queue. 

5. Write a Lisp program to solve the 8-queens problem. (This problem is to 
find a way to place eight queens on a chessboard so that no queen may 
capture any other through a single move, i.e., no two queens are on the 
same row, column, or diagonal.) Do depth-first, breadth-first, and best-first 
solutions to this problem. 
6. Write a Lisp program to solve the full 8 x 8 version of the Knight’s Tour 
problem. This problem asks you to find a path from any square to any other 
square on the chessboard, using only the knight. Do a depth-first, breadth-
first, and best-first solutions for this problem. 
 

 


